1. A rational number between $\frac{3}{5}$ and $\frac{4}{5}$ is:

MCO WORKSHEET-I CLASS X : CHAPTER - 1 <u>REAL NUMBERS</u>

(a)
$$\frac{7}{5}$$
 (b) $\frac{7}{10}$ (c) $\frac{3}{10}$ (d) $\frac{4}{10}$
2. A rational number between $\frac{1}{2}$ and $\frac{3}{4}$ is:
(a) $\frac{2}{5}$ (b) $\frac{5}{8}$ (c) $\frac{4}{3}$ (d) $\frac{1}{4}$
3. Which one of the following is not a rational number:
(a) $\sqrt{2}$ (b) 0 (c) $\sqrt{4}$ (d) $\sqrt{-16}$
4. Which one of the following is an irrational number:
(a) $\sqrt{4}$ (b) $3\sqrt{8}$ (c) $\sqrt{100}$ (d) $-\sqrt{0.64}$
5. $3\frac{3}{8}$ in decimal form is:
(a) 3.35 (b) 3.375 (c) 33.75 (d) 337.5
6. $\frac{5}{6}$ in the decimal form is:
(a) $0.8\overline{3}$ (b) $0.8\overline{33}$ (c) $0.6\overline{3}$ (d) $0.6\overline{33}$
7. Decimal representation of rational number $\frac{8}{27}$ is:
(a) $0.2\overline{296}$ (b) $0.29\overline{6}$ (c) $0.2\overline{96}$ (d) 0.296
8. $0.6666......$ in $\frac{p}{q}$ form is:
(a) $\frac{6}{99}$ (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) $\frac{1}{66}$
9. The value of $(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})$ is:
(a) 10 (b) 7 (c) 3 (d) $\sqrt{3}$
10. $0.\overline{36}$ in $\frac{p}{q}$ form is:
(a) $\frac{6}{99}$ (b) $\frac{2}{3}$ (c) $\frac{3}{5}$ (d) none of these

MCQ WORKSHEET-II CLASS X : CHAPTER - 1 REAL NUMBERS

MCQ WORKSHEET-III CLASS X : CHAPTER - 1 <u>REAL NUMBERS</u>

1.		(b) not a real number (d) an irrational number			
2.	The decimal expansion of π (a) is terminating (c) is non terminating and non recurring	(b) is non terminating and recurring (d) does not exist.			
3.	Which of the following is not a rational (a) $\sqrt{6}$ (b) $\sqrt{9}$ (c) $\sqrt{25}$				
4.	Which of the following is a rational num (a) $\sqrt{36}$ (b) $\sqrt{12}$				
5.	If a and b are positive integers, then HC (a) a x b (b) $a + b$ (c) $a - b$	$F(a, b) \times LCM(a, b) =$ (d) a/b			
6.	If the HCF of two numbers is 1, then the two numbers are called(a) composite(b) relatively prime or co-prime(c) perfect(d) irrational numbers				
7.	The decimal expansion of $\frac{93}{1500}$ will be (a) terminating (b) non-terminating (c) non-terminating repeating (d) non-terminating non-repeating.				
8.		(b) not a real number(d) an irrational number			
9.	The HCF of 52 and 130 is (a) 52 (b) 130 (c) 26	(d) 13			
10.	For some integer q, every odd integer is (a) q (b) $q + 1$ (c) $2q$	of the form (d) none of these			
11.	For some integer q, every even integer it (a) q (b) $q + 1$ (c) $2q$	s of the form (d) none of these			
12.	Euclid's division lemma state that for any positive integers a and b, there exist unique integers q and r such that $a = bq + r$ where r must satisfy (a) $1 < r < b$ (b) $0 < r \le b$ (c) $0 \le r < b$ (d) $0 < r < b$				

MCO WORKSHEET-IV CLASS X : CHAPTER - 1 <u>REAL NUMBERS</u>

1.	Δ is a	nroven stateme	ent used for pro	ving another state	ement	
1.	(a) axiom	(b) theorem	(c) lemma	(d) algorithm	ement.	
2.	The product of (a) always ratio		nal ad an irratio ways irrational	onal number is (c) rational or i	rrational	(d) one
3.	The HCF of sn (a) 0	nallest composit (b) 1	te number and t (c) 2	he smallest prime (d) 3	e number is	
4.	Given that HC (a) 14976	F(1152, 1664) = (b) 1664	= 128 the LCM (c) 11	(1152, 1664) is 52	(d) none of t	hese
5.	The HCF of two numbers is 23 and their LCM is 1449. If one of the numbers is 161, then the other number is					
	(a) 23	(b) 207	(c) 1449	(d) none	e of these	
6.		-		s a non-terminatir	ng decimal ex	pansion:
	(a) $\frac{33}{50}$	(b) $\frac{66}{180}$	(c) $\frac{6}{15}$	(d) $\frac{41}{1000}$		
7.	A number whe	n divided by 6 <mark>1</mark>	gives 27 quotie	ent and 32 as rem	ainder is	
	(a) 1679	(b) 1664	(c) 1449	(d) none	e of these	
8.	The product of L.C.M and H.C.F. of two numbers is equal to(a) Sum of numbers(b) Difference of numbers(c) Product of numbers(d) Quotients of numbers					
9.	L.C.M. of two co-prime numbers is always (a) product of numbers (c) difference of numbers (d) none					
10.	What is the H.	C.F. of two con	secutive even n	umbers		
	(a) 1	(b)2		(c) 4	(d) 8	
11.	What is the H.	C.F. of two con	secutive odd nu	umbers		
12.	(a) 1 The missing ru	(b) 2	owing footon to	(c) 4	(d) 8	
12.	(a) 2	(b) 6	owing factor tr	(c) 3	(d) 9	
			3			

MCO WORKSHEET-V CLASS X : CHAPTER - 1 <u>REAL NUMBERS</u>

1.	For some integer (a) <i>m</i>	•	•	e form (d) $2m + 1$		
2.	For some integer q , every odd integer is of the form					
	(a) <i>q</i>	(b) $q + 1$	(c) 2 <i>q</i>	(d) $2q + 1$		
3.	$n^2 - 1$ is divisible (a) an integer (c) an odd integer	(b) a	natural number n even integer			
4.	If the HCF of 65 (a) 4	and 117 is exp (b) 2		Form $65m - 117$, then the value of <i>m</i> is (d) 3		
5.	The largest numb (a) 13	er which divide (b) 65		leaving remainders 5 and 8, respectively, is (d) 1750		
6.	HCF (a, b) is		· · · · · · · · · · · · · · · · · · ·	$a = x^3y^2$ and $b = xy^3$; x, y are prime numbers, then (d) x^2y^2		
7.	(a) xy (b) xy^2 (c) x^3y^3 (d) x^2y^2 If two positive integers p and q can be expressed as $p = ab^2$ and $q = a^3b$; a, b being prime numbers, then LCM (p, q) is (a) ab (b) a^2b^2 (c) a^3b^2 (d) a^3b^3					
8.						
9.	The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is (a) 10 (b) 100 (c) 504 (d) 2520					
10. The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after:						
	(a) one decimal p(c) three decimal		(b) two decin (d) four deci	nal places		
11. The decimal expansion of the rational number $\frac{33}{2^2.5}$ will terminate after						
	(a) one decimal p(c) three decimal	lace	(b) two deci	nal places n 3 decimal places		